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Abstract:
Research  work  in  the  area  of  the  Global  Electric  Circuit  (GEC)  has  rapidly 

expanded in recent years mainly through observations of lightning from satellites  and 

ground-based  networks  and  observations  of  optical  emissions  between  cloud  and 

ionosphere.  After  reviewing  this  progress,  we  critically  examine  the  role  of  various 

generators  of  the  currents  flowing in  the lower and upper  atmosphere  and supplying 

currents to the GEC. The role of aerosols and cosmic rays in controlling the GEC and 

linkage  between  climate,  solar-terrestrial  relationships  and  the  GEC has  been  briefly 

discussed. Some unsolved problems in this area are reported for future investigations.
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1.   Introduction 
The global electric circuit (GEC) links the electric field and current flowing in the lower 

atmosphere,  ionosphere  and  magnetosphere  forming  a  giant  spherical  condenser 

(Lakhina, 1993; Bering III, 1995; Bering III et al., 1998; Rycroft et al., 2000; Siingh et 

al.,  2005),  which  is  charged  by  the  thunderstorms  to  a  potential  of  several  hundred 

thousand  volts  (Roble  and  Tzur,  1986)  and  drives  vertical  current  through  the 

atmosphere’s columnar resistance. The current causes weak electrification of stratified 

clouds  (Harrison  and  Carslaw,  2003)  and  produces  a  vertical  potential  gradient  in 

atmospheric  layers  near  the surface.  Horizontal  current  flows freely along the highly 

conducting earth’s surface and in the ionosphere, which is closed by the current flowing 

from the ground in to the thunderstorm and from the top of the thunderstorm to the 

ionosphere and back from the ionosphere to the ground through the global fair-weather 

load resistance (~ 100 Ω). Different regions of the atmosphere including the ionosphere 

and  magnetosphere  are  electro-magnetically  linked  (Singh  et  al.,  2004;  Siingh  et  al, 

2005).  In an active  thunderstorm the upward current  flows from thunderstorm to the 

ionosphere, which is known as Wilson current. This current spreads around the globe 

through the ionosphere/magnetosphere along the geomagnetic field lines to the opposite 

hemisphere. Figure 1 shows the global distribution of the current (Roble and Tzur, 1986) 

in  which  the  current  returns  to  the  surface  of  the  earth  as  the  fair-weather  air-earth 

current. This figure also shows the location of relevant layers of the atmosphere which is 

divided into four coupled regions i.e. troposphere, middle atmosphere, ionosphere and 

magnetosphere. The orography of the earth is also considered (Roble and Tzur, 1986). In 

this diagram the ionosphere and magnetosphere are treated as the passive elements of the 

circuit. The upward current from the earth’s surface to the bottom of the thundercloud 

consists of field dependent current,  convection current,  lightning current, precipitation 

current and displacement current (Roble, 1991). Any perturbation in the interplanetary or 

atmospheric environment causes a variation in electrical conductivity and hence variation 

in current/electric field system of the atmosphere. The variations on solar surface causes 

variations in the solar wind parameters, which can be coupled with the stratosphere and 

troposphere leading to modulation of current density in the global atmospheric electric 
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circuit from the ionosphere to the earth. The small-scale chaotic variation of conductivity 

in  the  mixing  layer  make  it  difficult  to  measure  the  systematic  variation  of  vertical 

current due to solar wind input. Even very small changes (1~ 3%) in the cosmic ray flux 

in the equatorial regions due to variation in solar wind inputs may affect the thunderstorm 

charging current and ionospheric potential.   

Recent observations of optical emissions above the top of the thunderstorm show 

that the electrical behaviour of the region is quite different than it was assumed in earlier 

models of GEC (Singh et al., 2004; Siingh et al., 2005). Rycroft (2006) has discussed 

tele-connections  between  thunderstorms,  lightning  and  optical  emissions  above 

thunderstorms. At mid latitudes precipitated burst of energetic electrons may lower the 

ionospheric  equi-potential  surface  above  the  thundercloud  sufficiently  to  trigger  an 

upward  lightning  discharge  to  the  ionosphere  (Rycroft,  1994).  The  flux  density  of 

precipitated electrons depends upon solar and geomagnetic conditions. In fact solar wind, 

solar flares,  galactic  cosmic rays,  ionospheric-magnetospheric  dynamo,  thunder cloud, 

geomagnetic  disturbances,  solar  magnetic  sector  boundary  crossings,  solar  cycle 

variations,  auroral  activity etc affect  the components of GEC (Lakhina 1993; Tinsley, 

2000; Singh et al., 2004). Solar wind and geomagnetic storm affect fair-weather current 

via aerosol distributions/ cloud microphysics (Pudovkin and Babushkina, 1992; Tinsely, 

2000;  Carslaw  et  al,  2002;  Harrison  and  Carslaw,  2003;  Tinsley  and  Yu,  2003)  by 

changing the pressure/  temperature  distribution  of the troposphere or  by changing its 

dynamics. The earth’s climate and climatic changes have direct connection with lightning 

activity (Williams, 2005), which has direct linkage with GEC. Thus, GEC may constitute 

a variable physical mechanism linking space weather and the earth’s weather and climate 

(Rycroft et al, 2000; Rycroft and Fullekrug, 2004).

In the above linkages, there are various physical processes having relaxation time 

lying  between  microseconds  to  hours,  which  require  further  study  to  improve  our 

understanding, particularly electrical processes in the earth’s environment. In the recent 

past  a  number  of  programs  have  been  launched  to  understand  some  of  the  related 

phenomena/  processes;  such  as  SPECIAL  (Space  Processes  and  Electrical  Changes 

Influencing  Atmospheric  Layers)  organized  by  European  Space  Agency  to  study  (i) 

global atmospheric electric circuit,  (ii)  charge particle fluxes, events and statistics and 
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(iii) sprites and lightning (Rycroft and Fullekrug, 2004). Other programs include STEP 

(Solar Terrestrial  Energy Program),  GEM (Geospace Environment  Modeling),  GAEM 

(Global  Atmospheric  Electrical  Measurements)  and  IGBP  (International  Geospace-

Biosphere  Program).  Thus,  several  working  groups have  been  engaged to  study sun-

weather relationship and GEC.

In the recent past, many review articles have appeared describing various specific 

aspects of the GEC (e.g. Roble and Tzur, 1986; Bering III, 1995;  Bering III et al., 1998; 

Rycroft et al., 2000;  Tinsley, 2000;  Singh et al. 2004;  Harrison, 2005, Siingh et al., 

2005;  Williams,  2005;  Rycroft,  2006).  Recent  developments  and studies  in  this  area, 

however, point out the need of having a comprehensive view of the flow of currents in 

different regions of the Earth’s environment and possible linkage of the GEC with several 

other  phenomena  such  as   cosmic  rays,  atmospheric  aerosols,  weather  and  climate, 

sprites, blue jets, elves etc.  In this paper, we briefly review the present status of GEC and 

highlight the possible linkages with other phenomena relating it to weather and climate. 

Section  2  briefly  discusses  thunderstorms,  optical  emissions,  Schumann  resonances, 

ionospheric dynamo and magnetospheric dynamo, which constitute the major sources of 

GEC. In section 3, we discuss various models of GEC proposed from time to time. It has 

been  suggested  that  the  mathematical  modeling  of  GEC  should  include  the  intense 

current between the top of the thunderstorm and the ionosphere during optical emissions, 

which was not included earlier. In section 4, we discuss the electrical conductivity and 

columnar  resistance  component  of  GEC,  which  controls  the  magnitude  of  electric 

potential and current. The role of solar and cosmic ray variability is discussed briefly. 

The  variation  of  global  temperature  (climate  change)  and  its  relation  with  global 

atmospheric electric circuit is discussed in section 5. It is noted that even 1% increase in 

global  surface  temperature  could  result  into  a  20% increase  in  ionospheric  potential 

(Price,  1993).  Aerosols  act  as  a  mediator  of  cloud microphysics,  precipitation,  cloud 

electrification and lightning. This aspect has been briefly discussed in section 6, where as 

section 7, is devoted to cosmic rays, climate and global electric circuit. The importance of 

GEC study to our society is presented in section 8. Finally, some recommendations for 

future work are presented in section 9.
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2.  Generators and sources of the GEC

The main sources of electric fields and currents in the GEC are thunderstorms,   in 

the troposphere and dynamo situated in the  ionosphere and magnetosphere. The current 

output from the thunderstorms around the globe maintains a vertical potential difference 

~ 300 kV between the ground and the ionosphere (where the later is at positive potential), 

with a current flow of about 103 A. The dynamo in the ionosphere is produced by tides 

generated in situ and tides propagating upward from the lower atmosphere. These tides 

generate horizontal  potential  differences of 5-15 kV with the current flow of ~ 105 A 

within the ionosphere.  On the other hand, the magnetospheric dynamo is driven by the 

interaction of solar wind with the Earth’s geomagnetic field and generates a horizontal 

dawn-to-dusk potential drop of ~ 40 - 100 kV across the magnetic conjugate polar cap. 

Measurements have never shown a complete absence of fair weather electric field for any 

length  of  time,  thereby  suggesting  continuous  operation  of  thunderstorm  and  other 

generators in maintaining the current flowing in the global circuit. The role of different 

generators in  generating the electric field/current in different regions is discussed below.

2.1 Thunderstorm 

The major source of dc electric field is the thunderstorm. Below the cloud, a net 

negative charge is transferred from the thundercloud to the earth and above it positive 

charge is transferred to the conducting upper atmosphere/ionosphere making it at positive 

potential.  Charge  separation  inside  thunderstorms  leads  to  the  development  of  huge 

electric  potentials  and  associated  energized  charge  particle  beam,  which  is  known to 

radiate wide spectrum of electromagnetic waves such as optical emissions, X-rays and 

gamma rays (Fishman et al., 1994; Rodger, 1999; Milikh and Valdivia,1999).

Lightning  activity  is  mainly  concentrated  in  three  distinct  zones  -  East  Asia, 

Central Africa and America. Lightning is more prevalent in the northern hemisphere than 

the  southern  hemisphere  and  mostly  occurs  over  the  land  surface.  The  variation  of 

lightning activity with latitude as observed from space shows that two of every three 

lightning flashes occur in tropical region (Williams, 1992). In addition to the tropical 

lightning, extra-tropical lightning activity plays a major role in the summer season in the 

northern hemisphere, resulting in the global lightning activity having a maximum from 
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June to August. The worldwide thunderstorm activity as a function of universal time is 

shown in figure 2. In the figure, the upper panel shows annual diurnal variation of the 

potential gradient (V/m) on the oceans as measured by the research vessel Carnegie and 

Maud expeditions (Parkinson and Torrenson, 1931). The lower panel shows the annual 

diurnal  variation  of  global  thunderstorm  activity  (Whipple  and  Scrase,  1936).  The 

similarity  of  the  diurnal  variations  of  the  electric  field  over  the  oceans  and  of  the 

worldwide thunderstorm activity supports the hypothesis that thunderstorms are the main 

electrical generators in the GEC. About 200 thunderstorms are active at any time, which 

are mainly concentrated over the tropical land masses during the local afternoons and 

cover about 10% of the earth’s surface (Markson, 1978). On the remaining 90% of the 

earth’s surface return current ~1000A (~ 1 pA/m2) from the ionosphere to the earth’s 

surface flows, which is also known as fair weather current

Ruhnke  (1969)  considered  the  thunderstorm  generator  as  a  current  generator 

whose  total  Maxwell  current  output  is  independent  of  load,  because  the  impedance 

between cloud top and the ionosphere, and between base of the cloud and ground is much 

larger than the load in the fair-weather regions. The load in the fair weather regions is 

~300Ω, where as the resistance between cloud top and ionosphere lies in the range 105 

-106  Ω and between base of cloud and ground lies between 104  -105  Ω (Markson, 1978). 

The Maxwell current density in fair-weather regions is more informative parameter than 

ionospheric  potential  because  the  latter  depends  on  the  columnar  resistance,  which 

exhibits  complex variations (Markson, 1978). The average Maxwell current density is 

usually not affected by lightning discharges and varies slowly throughout the evolution of 

storm (Krider and Musser,1982; Pawar and Kamra,  2004). Since the Maxwell  current 

remains steady at time when the electric field both at the ground and aloft undergoes 

large changes in amplitude,  and some times even polarity,  Krider and Musser (1982) 

inferred that the cloud electrification processes may be substantially independent of the 

electric field.

Thunderstorms  also  couple  the  troposphere  to  the  magnetosphere  through 

electromagnetic  radiations  generated  from  lightning  discharges.  The  interaction  of 

electromagnetic waves propagating in whistler  mode with counter streaming energetic 

electrons causes precipitation of substantial fluxes of energetic electrons from the Van 
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Allen belts in to the atmosphere. Similarly waves propagating in left hand mode causes 

precipitation of energetic protons to the atmosphere. These energetic charged particles 

lower the ionospheric potential in the region of precipitation (Rycroft 1994). Further, the 

observations  of  the  optical  emissions  on  top  of  the  thunderstorms  and  below  the 

ionosphere show that the resistance of the region during emissions could not be as high as 

considered  previously.  Further,  in  the  explanation  of  the  optical  emissions  (sprites) 

relativistic  breakdown  mechanism  is  considered,  during  which  MeV  electrons  are 

produced  which  are  injected  into  the  magnetosphere.  Thus,  situation  becomes  quite 

complex and this problem has not yet been solved. In the next section, we discuss briefly 

the features of optical emissions relevant to global electric circuit.

2.1.1 Optical emission above the thunderstorm 

 In the case of intense thunderstorm the return stroke current does not end in the 

cloud, but continues to move upward and terminates in the lower ionosphere (Lyons, 

1996  and  references  therein).  This  transient  current/field  causes  optical  emissions 

(sprites, elves, blue jets, blue starters) in the space between the top of the cloud and the 

lower  ionosphere.  Figure  3(a)  shows location  of  blue  jets,  red  sprite  and  elves  with 

height. In the same figure, the variation of electron density and temperature along with 

demarcation of troposphere, stratosphere, mesosphere and thermosphere are given. Figure 

3(b) shows cloud to ground lightning, blue jets, gigantic jets sprite and elves (Neubert, 

2003;  Pasko,  2003).  Sprites  appear  as  cluster  of  short  lived  (~  50  ms)  pinkish  red 

luminous columns, stretching from ~ 30 to 90 km altitude having width less than one km 

(Lyons, 1996; Neubert, 2003) and the maximum brightness at 66 km altitude (Wescott et 

al., 2001). The upper portion of the sprite is red, with wispy, faint blue tendrils extending 

to  40  km or  lower.  Boccippio  et  al.  (1995)  showed  that  about  80  % of  sprites  are 

associated with ELF transient events and +ve CG lightning return strokes having large 

peak current (> 35 kA) (Barr et al., 2000) and large ΔMQ (total charge moment change of 

the thunderstorm) values. Some sprites associated with –ve CG lightning have also been 

observed (Barrington-Leigh et  al.,  1999). Sprites may occur over any area as long as 

energetic thunderstorms are present and they may produce detectable ELF/VLF transients 

(Price et al., 2002) and a vertical electric field perturbation of 0.73 V/m in stratosphere 

(Bering III et al. 2002). These events in early literature were popularly known as blue or 
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green pillars and rocket like columns of optical emissions (Wood, 1951). Blue jets are 

slow moving fountain of blue light from the top of the cloud, where as elves are lightning 

induced flashes that  can spread over ~ 300 km laterally around 90 km altitude in the 

lower ionosphere. Recently, Su et al. (2003) have observed six gigantic optical jets from 

the  oceanic  thunderstorm and  each  of  them may  remove  ~30  C  of  charge  from the 

ionosphere.  Gigantic  jets  are  special  phenomena  of  the  oceanic  thunderstorms  that 

establish a direct link between a thundercloud (~ 16 km altitude) and the ionosphere at 90 

km elevation. ELF radio wave was detected only in four events and that no cloud-to-

ground lightning was observed to trigger these events.  But, observations indicate  that 

ELF waves  were  generated  by negative  cloud–to-ionosphere  discharge,  which  would 

reduce  the  electrical  potential  between  the  ionosphere  and  cloud  (Rycroft,  2006). 

Therefore,  it  is  necessary  to  modify  the  conventional  picture  of  GEC to  include  the 

contribution of gigantic jet, blue jets and elves and sprites. The detailed knowledge of 

characteristic properties of these emissions along with frequency of events will help us to 

understand their contribution to the GEC (Pasko, 2003).  

Cho and Rycroft (1998), using electrostatic and electromagnetic codes simulated 

the electric field structure from the cloud top to the ionosphere and tried to explain the 

observation of a single red sprite. To explain the clusters of sprites, they suggested that 

the positive charges are distributed in spots so that a single discharge may lead to clusters 

of red-sprites. The redistribution of charge and the electromagnetic pulse during lightning 

discharge may produce acceleration of electrons, heating and ionization of atmosphere. 

This may lead to strongly non-linear situation and runway electrons/electrical breakdown 

of the atmosphere may occur (Rycroft and Cho, 1998; Rowland, 1998). Nagano et al. 

(2003)  evaluated  the  modification  in  electron  density  and  collision  frequency  of  the 

ionosphere by the electromagnetic  pulse of the lightning discharge and explained the 

generation  of  elves.  In  such  a  situation  the  electrical  conductivity  of  the  atmosphere 

above thunderstorms enhances by about a factor of 2 from ambient values (Holzworth 

and Hu, 1995). These changes in conductivity could be due to thunderstorm-produced 

gravity waves or X-rays from lightning induced electron precipitation (Hu et el., 1989). 

The sprites  also  provide  a  link  between tropospheric  processes  in  thunderstorms  and 

mesospheric processes in the upper atmosphere. Hiraki et al. (2002) suggested that sprites 

8



would change chemically the concentration of NOx and HOx in the mesosphere and lower 

atmosphere. These chemical changes may impact on the global cooling or heating in the 

middle atmosphere. 

Pasko et  al.  (2002)  have reported a  video recording  of  a  blue jet  propagating 

upwards from a small thundercloud cell to an altitude of about 70 km. As relatively small 

thundercloud cells are very common in the tropics, it is probable that optical phenomena 

from the top of the clouds may constitute an important component of the GEC. It has 

motivated a reexamination of our understanding of the electrical processes and properties 

of  the  atmosphere.  During  a  SPECIAL meeting  in  Frankfurt  (20-23 Feb,  2003),  the 

fundamental  understanding  of  powering  of  the  global  electric  circuit  by  global 

distribution of thunderstorms was questioned.  It was argued that the power supplied by 

thunderstorms  is  insufficient  to  maintain  a  field  of  the  magnitude  observed  in  fair-

weather regions.  The inclusion of the effect of sprites and other optical phenomena also 

could not explain. Because, sprites etc occur in the upward branch of the global electric 

circuit  above  the  thunderstorms  and  they  are  likely  to  influence  only  the  upper 

atmosphere  conductivity.  Moreover,  since they occur  much  less  frequently  (only one 

sprites out of 200 lightning) because of their association with intense lightning discharges 

(Singh et al., 2002), they may not play a major role in GEC (Rycroft et al., 2000). Since 

optical  emissions  could  change  electrical  properties  of  the  atmosphere  and  influence 

processes  related  with  weather  and  climate,  intense  research  activity  in  this  area  is 

required.  Further,  thunderstorms  are  also  the  source  of  Schumann  resonance,  which 

control the electrodynamics of the lower atmosphere. 

2.1.2 Schumann resonance

Lightning  discharges  between  thunderclouds  and  the  ground  radiate  powerful 

radio noise burst over a wide frequency spectrum ranging from a few Hz to higher than 

several hundreds of Megahertz.  These noises in the ELF (3 Hz -3 kHz) and VLF (3-30 

kHz) range can propagate over long distances through the Earth-ionosphere waveguide 

(Singh et al., 2002). Especially, radio noise in the frequency range less than 50 Hz can 

propagate  globally  with  extremely  low  attenuations  (Jones,  1999)  and  constructive 

interferences of these waves result in the Earth-ionosphere cavity resonance known as 
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Schumann  resonance  (SR)  with  their  fundamental  mode  of  eigen  frequency at  8  Hz 

(Sentman, 1995; Huang et al., 1999; Barr et. al., 2000).  

The amplitude  of Schumann modes  is  determined by the temporal  and spatial 

distribution of global lightning, which is intense over the tropics. The variations in solar 

activity  or  nuclear  explosions  produce  disturbances  in  the  ionosphere  and  affect  SR 

(Schlegel and Fullekug, 1999). Solar proton events cause increase in frequency, Q-factor 

(i.e. band width of the resonance mode) and amplitude of the SR mode (Schlegel and 

Fullekrug, 1999). Sentman et al. (1996) examined the SR measurement from California 

and Australia during the large solar storms in the fall of 1989 and found no measurable 

difference in SR intensities, although they found a sudden decrease in Q-factor of the 

second  mode,  which  was  attributed  to  small  changes  of  middle  atmospheric 

conductivities  by  energetic  particles.  SR  intensity  depends  upon  the  height  of  the 

ionosphere (Sentman and Fraser, 1999). It has solar cycle dependence (Hale, 1987) and 

responds to solar flares, magnetic  storms (Hale,  1987) and solar proton events (Reid, 

1986). However, the processes involved in it are not properly understood and efforts are 

being made in this direction.

Sentman (1995) has discussed the principal  features of SR, which are used to 

monitor global lightning activity (Heckman et al., 1998; Barr et al., 2000; Rycroft el al, 

2000), global variability of lightning activity (Satori, 1996; Nickolaenko et al., 1996) and 

sprite activity (Boccippio et al., 1995; Cummer et al., 1998; Rycroft et al., 2000).  Since 

thunderstorm is the main source of the SR phenomenon and GEC, their link with weather 

and climate could be developed (Williams, 1992; Price, 1993; Price and Rind, 1994). 

Such  links  in  the  electromagnetic,  thermodynamic,  climate  and  climate-change 

characteristics  of  the  atmosphere  have  greatly  enhanced the interest  in  monitoring  of 

electromagnetic waves and their mapping and propagation properties in different regions 

of the atmosphere.  If lightning is the main or only source for maintenance of ionospheric 

potential,  the measurements  of SR and ionsopheric potential  should produce identical 

results.   The  differences  between  the  two  results  will  indicate  the  contribution  to 

ionospheric potential by other processes such as corona discharge from elevated objects 

above ground.

2.2 Ionospheric dynamo
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The regular tidal wind system drives ionospheric plasma at dynamo layer heights 

and pushes it against the geomagnetic field. Ions and electrons are affected differently by 

these winds. While the ions being massive still move essentially with the neutrals, the 

geomagnetic field already controls the motion of the electrons. The differential motion of 

ions and electrons  is  responsible  for horizontally  flowing electric  currents.  Moreover, 

charge  separation  causes  an  electric  polarization  field,  which  is  constrained  by  the 

condition of source free currents (Volland, 1987) and has been observed indirectly from 

backscatter measurements (Richmond, 1976). Lunar variations are usually less than 10 % 

of magnitude of solar variation (Matsushita, 1967). They depend not only on latitude, 

solar  time,  season  and  solar  cycle,  but  also  on  lunar  phase.  Global  analyses  of 

geomagnetic  lunar  effects  have  also  found  significant  longitudinal  variations.  The 

seasonal variations of the lunar magnetic perturbation tend to be greater than those for the 

solar perturbation. The lunar current system finds its origin in the ionosphere dynamo and 

lies close to the dynamo height along with Sq current system.

The dynamo electric field associated with the wind drives a current, which tends 

to converge in some regions of space and cause an accumulation of positive charge, while 

in  other  regions  of space it  would diverge and cause negative  charge to  accumulate. 

These charges would create an electric field, which would cause current to flow tending 

to  drain  the  charges.  An equilibrium state  would be attained  when the  electric-field-

driven current drained charge at precisely the rate it was being accumulated by the wind-

driven current. A net current flows in the ionosphere owing to the combined action of the 

wind and electric field (Takeda and Maeda, 1980). A large-scale vortex current at middle 

and  low-latitudes  flows  counter  clockwise  in  the  northern  hemisphere  and clockwise 

vortex flows in the southern hemisphere. Traditionally these vortices are known as the Sq 

current system because of the nature of the ground-level magnetic field variations that 

they produce. Currents and electric fields produced by the ionospheric wind dynamo are 

relatively weak in comparison with those of the solar wind/magnetospheric dynamo at 

high latitudes.  Electric  field  in the equatorial  lower ionosphere has a localized strong 

enhancement  of  the  vertical  component  associated  with  the  strong  anisotropy  of  the 

conductivity  in  the  dynamo  region.  This  enhanced  electric  field  drives  an  eastward 

daytime current along the magnetic equator called equatorial  electrojet (Forbes, 1981; 
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Richmond,  1986).  Efforts  are  being  made  to  understand  the  changes  in  equatorial 

electrojet in response to the electrodynamic processes involved in the coupling between 

the solar wind, magnetosphere and ionosphere.  This is due to dynamo region electric 

fields  being  communicated  to  higher  latitudes  along  the  geomagnetic  field  lines. 

Monitoring  the  upper  atmosphere  by  coherent  and  incoherent  backscatter  radar 

observations has confirmed that the distributions in the dynamo region electric fields at 

equatorial latitudes originate in the corresponding electrodynamics disturbances at high 

latitudes  (Somayajulu  et  al.,  1985).  Studies  based on the surface  magnetic  data  have 

shown consistent and near instantaneous response of equatorial  electrojet variations to 

geomagnetic  disturbances  at  high  latitudes  (Rastogi  and  Patel,  1975).   Ionospheric 

dynamo is also affected by the absorption of ozone at the lower altitudes (30-60 km) and 

presence of stronger winds at higher altitudes (> 130 kms). 

Dynamo potential differences may increase during the geomagnetic storms period 

due to the enhanced E and F region winds.  Geomagnetic  disturbed ionospheric  wind 

dynamo can produce potential  differences comparable  to those produced by the quiet 

time dynamo (~ 10 kV), with higher potentials at the equator than at high latitudes (Blanc 

and Richmond, 1979).   

2.3  Magnetospheric dynamo

The stresses applied to the outer magnetosphere by the solar wind and dynamical 

processes  in  the  tail,  is  ultimately  applied  to  the  terrestrial  ionosphere  and  upper 

atmosphere. As a consequence of the high thermal energy of the plasma the drift motion 

causes charge separation and hence polarization electric field is setup directed from dawn 

to dusk. The currents flow along the geomagnetic field lines down into the ionosphere on 

the  dawn side  and up  from the  ionosphere  on the  dusk side,  both  foot  points  being 

electrically connected via the dynamo region. This process can be considered similar to a 

huge hydromagnetic generator situated in to the magnetosphere (in which kinetic energy 

of  the  solar  wind  plasma  is  converted  in  to  electric  energy)  and  the  load  in  the 

ionosphere;  linked  to  each  other  via  field-aligned  currents  (Strangeway  and  Raeder, 

2001). The work done by these currents in the ionosphere overcomes the drag on the flow 

over the polar cap away from the sun and on the flow back towards the sun at lower 

latitudes. The force on the plasma moving anti-sunward across the polar cap is supplied 
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by the solar wind, predominantly by reconnection with the magneto-sheath magnetic field 

(Russel and Fleishman, 2002).

Mass, momentum and energy transfer from the solar wind via the magneto-sheath 

can occur through the cusps as a result of a number of processes, of which magnetic 

reconnection is the most important. Lester and Cowley (2000) have discussed the role 

played by reconnection in the magnetospheric convection and its importance for space 

weather.  There  are  two  processes  by  which  the  solar  wind  plasma  can  cross  the 

magnetopause, (i) direct entry due to flow along reconnected open field lines (Dungey, 

1961; Gonzalez et al., 1994) and (ii) cross field transport due to scattering across closed 

magnetopause  field  lines  (Lee  et  al.,  1994).  The  first  process  is  more  likely  to  be 

important  when the interplanetary magnetic field (IMF) is directed southward.  In this 

case,  the  solar  wind  and  magnetospheric  field  lines  are  anti-parallel;  the  magnetic 

reconnection can occur easily leading to 5 to 10% solar wind energy imported into the 

earth’s  magnetosphere  (Weiss  et  al.,  1992)  during  sub-storms  and  storms.  During 

northward  IMF  intervals,  the  energy  injection  due  to  magnetic  reconnection  is 

considerably  reduced  and  cross-field  transport  becomes  important.  Tsurutani  and 

Gonzalez (1995) have estimated that about 0.1 to 0.3% of the solar wind energy gets 

transferred to the magnetosphere during northward IMF. Several  other processes, like 

impulsive penetration of the magneto-sheath plasma elements with an excess momentum 

density  (Owon  and  Cowley,  1991),  plasma  entry  due  to  solar  wind  irregularities 

(Schindler, 1979), the Kelvin Helmholtz instability (Miura, 1987) and plasma percolation 

due to overlapping of a large number of tearing islands at the magnetopause (Galeev et 

al., 1986) have been suggested for the plasma transport across the magnetopause.

The plasma-sheet, central part of the geo-magneto-tail is a giant plasma reservoir 

where the plasma (ionospheric / solar wind origin) is gathered and accelerated from a few 

eV  to  a  few  keV.  The  finite  dawn-dusk  electric  field  imposed  by  the  solar  wind 

magnetosphere interaction in the whole cavity accelerates the ions and to a lesser extent 

the electrons in the central  part  of the plasma sheet,  where the magnetic field almost 

vanishes. The plasma in the plasma sheet has very large ratio β between the kinetic and 

the magnetic pressure, this makes the system extremely unstable; very fast developing 

time variations called sub-storms, do develop in the plasma sheet. Prior to a sub-storm, 
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the plasma sheet extends to a large space where the vertical component of the magnetic 

field becomes significant. The plasma is pushed earthward by E × B convection (E being 

essentially dawn to dusk) and the tail current increases. As plasma is convected inward, it 

faces increased magnetic field. The conservation of the adiabatic invariants leads to the 

energization of plasma by Fermi and betatron mechanism. The small-scale fluctuations 

that develop within the magnetospheric boundaries/discontinuities also play a significant 

role in accelerating electrons along field lines. 

Energetic particles, especially electrons precipitate from the magnetosphere due to 

wave-particle interaction in to the upper atmosphere and produce the visible emissions 

called  the  aurora  borealis  (in  the  north)  or  the  aurora  austral  is  (in  the  south).  This 

energetic particle precipitation also causes significant ionization, heating and dissociation 

in the thermosphere. Further, the energized plasma also has an important influence on the 

flow of the electric currents and on the distribution of electric fields  (Spiro and Wolf, 

1984). Energetic particles drift in the Earth’s magnetic field, electrons towards the east 

and positive ions towards the west, so that a westward ring current flows which exerts an 

electromagnetic force on the plasma directed away from the Earth; thus tending to oppose 

the earthward convection.  Charge separation associated with the ring current tends to 

create  an  eastward  electric  field  component,  opposite  to  the  night  side  westward 

convection  electric  field,  largely  canceling  the  convection  electric  field  in  the  inner 

magnetosphere. The overall pattern of the magnetospheric convection tends to map along 

the  magnetic  field  line  in  to  the  ionosphere  even  though  this  mapping  is  imperfect 

because  of  net  electric  field  that  tends  to  develop  within  the  non-uniform energetic 

plasma. In the upper ionosphere, 

EPlasma = 0 = E + vs × B                                                                                                  (1)

 where E is the electric field in the Earth fixed frame of reference, vs is velocity of solar 

wind plasma with respect to the Earth and B is geomagnetic field vector. The electric 

field strength in the auroral oval tends to be somewhat larger than the polar cap electric 

field.  Dramatic  disturbances  of  the  entire  magnetosphere  during  the  magnetic  storms 

period, lasting for about a day is produced by the enhancement of the solar wind velocity, 

density and southward IMF component (Roble, 1985; Richmond, 1986; Roble and Tzur, 

1986).  These  storms  are  predominantly  phenomena  of  the  solar  wind/magnetosphere 
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dynamo, but they are also affecting the ionospheric wind dynamo. Auroral conductivity 

enhances due to the storm and these conductivities can also be altered at lower latitudes 

at  night by over an order of magnitude (Rowe and Mathews, 1973). The entire wind 

system during the major storms in the dynamo region can be altered by the energy input 

to the upper atmosphere; the pattern of electric field generation is modified (Blanc and 

Richmond, 1979). The above discussion of the magnetospheric convection is a simplified 

picture and an indicative of the role played by it in the electromagnetic coupling of the 

upper atmosphere. The complete description is not possible in this review

3. Global Electric Circuit models 

A  few  mathematical  models  of  global  atmospheric  electric  circuit  involving 

various generators as discussed above have appeared over the years (Kasemir, 1977; Hill, 

1971;  Hays  and  Roble,  1979;  Ogawa,  1985;  Roble,  1991). Hays  and  Roble  (1979) 

presented a quasi-static model,  which is shown in Figure 1 that  couples many of the 

elements operating in the global circuit. They considered thunderstorms as positive and 

negative  point  pairs  constituting  current  sources  that  can  be  randomly  distributed  in 

various thunderstorm regions around the earth, including the effects of earth’s orography 

and  electrical  coupling  along  geomagnetic  field  lines  in  the  ionosphere  and 

magnetosphere.  However,  they  did  not  consider  latitudinal,  longitudinal  and  height 

variations  of  the  atmospheric  conductivity.   Makino and Ogawa (1984)  considered  a 

numerical model including the conductivity details, but the distribution of aerosol particle 

concentration near the earth-surface and its subsequent effect on the global resistance is 

missing.    

Sapkota  and Varshneya  (1990)  studied  the  effects  of  pollution  due  to  aerosol 

particle  (anthropogenic  and  volcanic  eruption),  ionization  caused  by  the  coronae 

discharges, solar activity and of stratospheric aerosol particles (SAP) on the parameters 

of the GEC. They have shown that an increase in SAP increases the global resistance, 

while  both  global  current  and  ionospheric  potential  decrease.  The  SAP  affects  the 

electrical structure of the stratosphere and the troposphere except in volcanically active 

region,  where  conductivity  is  low due  to  high  aerosol  particle  concentration.  A 7 % 

increase in the ionospheric potential by global variation of ionization due to solar activity 

has little effect on the ground electrical properties, where more than 30 % variations have 
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been  reported  to  be  caused  by  local  effects  (Sapkota  and  Varshneya,  1990).  The 

calculations are based on the assumption that man made pollution has been increased 

substantially due to the activity in the northern hemisphere.

The widely referred model of Ogawa (1985), considering the simple equivalent 

circuit  for  the  atmosphere  and  an  equipotential  surface  for  the  ionosphere  treats  the 

thundercloud  as  a  constant  current  generator  with  a  positive  charge  at  the  top  and 

negative  charge  at  its  bottom.  Rycroft  et  al.  (2000)  presented  a  new model  of  GEC 

treating the ionosphere and the magnetosphere as passive elements and presented three 

different regions of fair-weather circuit. One of these is for the high-altitude part of the 

earth, where the profiles of J and E through the fair-weather atmosphere will differ from 

those of low and mid-latitudes. The energy associated with the global electric circuit is 

enormous ≈ 2 ×1010 J  (Rycroft et al., 2000). This value is obtained by considering 200 C 

charge associated with each storm and 1,000 storm operating around the globe at a time. 

The electric current density through the fair-weather atmosphere is taken as ≈ 2 × 10-12 A/

m2. Taking conductivity of air at ground level to be ≈ 2 × 10-14 mho/m, the fair weather 

electric field is ≈ 102 V/m at the ground level,  ≈ 1 V/m at 20 km altitude, and ≈ 10-2 V/m 

at  50  km altitude  (Rycroft  et  al.,  2000).  Thus,  even  though  the  fair-weather  current 

remains the same, the vertical electric field goes on decreasing with altitude because of 

change in conductivity. For example, following a Forbush decrease, if the atmospheric 

conductivity  is  everywhere  reduced by 10 %, then  fair-weather  electric  field  will  be 

increased by ~10 % (Ogawa, 1985). While discussing the effect of sprites, Rycroft et al. 

(2000) argued that the ionospheric potential would reduce to 99 % of the initial value 

only for few milliseconds after sprites and would have little effect on the fair-weather 

electric field.

Harrison (2005) studied the average properties of the GEC.  Rycroft (2006) has 

updated his GEC model, in which he included some new generators (i.e. mesospheric 

generators),  along with some switches, which are closed for short time (when certain 

types of discharges occur). 

In  all  GEC  models,  electrostatic  phenomena  have  been  considered,  whereas 

during lightning discharges, electromagnetic waves having frequencies from a few Hz to 

100 MHz are generated and propagated through the atmosphere. To account for the effect 
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of  these  waves,  electrodynamics/  electromagnetic  effects  should  be  considered  by 

relating electromagnetic fields to charge and current densities in a time varying situation. 

At  higher  frequencies  (ω >>  σ/ε0,  where  σ  is  conductivity  of  the  medium and  ε0 is 

permittivity  of  the  free  space),  the  medium can  be  considered  as  a  leaky  dielectric, 

whereas at lower frequencies )/( 0εσω << , it can be considered as a conductor. Even in 

the absence of radiation, displacement current should be considered. In fact the Maxwell 

current  (Singh et  al.,  2004)  is  very variable,  and not  a great  deal  is  known about  it. 

Further, optical emissions are associated with transient currents/ fields, which change the 

electrical  properties  of  the  medium.  All  these points  should  be included in  the  GEC 

model.  The  conductivity  and columnar  resistance  of  the  ambient  medium along with 

variations in the source, govern the electric field and small variation in it.  

4. Electrical conductivity and columnar resistance of the GEC 

The electrical conductivity depends upon the distribution of ions, electrons and 

presence of magnetic field in the ambient medium. Principle source of ionization in the 

lower atmosphere is the galactic cosmic rays, which maintains the electrical conductivity 

from the ground to about 60 km in altitude. Near the ground some additional ionization is 

produced  due  to  release  of  radioactive  gases  from  the  soil  and  above  60  km  solar 

ultraviolet  radiation  becomes  important  source.  However,  during  the  magnetic  storm 

period  ionization  due  to  energetic  auroral  electron  precipitation  and  auroral  X-rays, 

Bremsstrahlung radiation along with proton bombardment (during solar proton events), 

also become significant sources specially in the high-latitude atmosphere. 

The electrical conductivity increases roughly exponentially with altitude with a 

scale height ~ 7 to 8 km in the lower atmosphere due to the increase of cosmic ray’s 

energy spectrum with altitude (Roble and Tzur, 1986) and charged particles precipitating 

from the magnetosphere.  In  the stratosphere,  conductivity  scale  height  is  ~7 km.  Hu 

(1994) showed that  average positive  conductivity  was 15 % higher  than the negative 

conductivity and it  is  the function of latitude  but  not  longitude.  The average vertical 

profile of the conductivity at the south pole has a scale height of ~ 10 km (Holzworth, 

1991). When this result is compared with the ~ 7 km value obtained at other Antarctic 

and southern locations, it appears that the conductivity scale height may increase with 

increasing geomagnetic latitude across the polar cap.   
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 The atmospheric conductivity increases form 10-13   to 10-7 mho/m when measured 

from  the  earth’s  surface  to  80  km  altitude  (Cho  and  Rycroft,  1998).  Hale  (1994) 

presented  a  more  complex  profile  depicting  variation  in  both  space  and  time  under 

different  geophysical  conditions.  Pasko  and  George  (2002)  discussed  nighttime 

distribution of middle atmospheric conductivity both low for latitude and mid latitude 

conditions, which are very similar to that of Hale (1994).  Radioactivity of the ground 

and its emanations cause significant variations in electrical conductivity near the ground 

both in space and time in an unpredictable way (Hoppel et al., 1986, Volland, 1987). One 

consequence of the increase in conductivity with altitude is that the columnar resistance 

of the atmosphere is concentrated near the surface. Vertical current flows between the 

positively charged ionosphere and the earth’s surface. The current is closely linked to the 

vertical variations of aerosol and ion concentrations in the atmosphere, which together 

determine the total electrical resistance of the atmosphere. 

The variation  of  columnar  resistance  at  different  latitudes  due to  geomagnetic 

influence  on  cosmic  ray  ion  production  and  spatial  changes  in  tropospheric  aerosol 

modifying the ion removal rate, has been discussed by Harrison (2005). Global variation 

of columnar resistance is not well known, although it is an important property of the 

global  electric  circuit.  In  the  highly  polluted  area  the  columnar  resistance  increases 

significantly and lowers the air-earth current. The columnar resistance integrated over the 

earth’s surface provides the load term in global atmospheric electric circuit, whereas the 

integrated  value  over  altitude  provides  a  local  value,  which  heavily  depends  on 

atmospheric,  ion-aerosol  interaction  (Harrison  and  Carslaw,  2003).  The  phenomena 

involved in controlling the local value of columnar resistance is important as the physics 

of cosmic rays, ions, aerosols and clouds have been suggested to provide a mechanism 

linking solar change and climate (Carslaw et al., 2002).

At the top of the middle atmosphere the conductivity becomes anisotropic with 

the Pedersen conductivity (σp, carried by electrons below 100 km and by ions above that 

altitude) parallel to E-field and orthogonal to B0, the Hall conductivity (σH, mainly due to 

electrons), orthogonal to E and Bo, and the field-aligned conductivity  σF parallel to B0, 

because of the influence of the geomagnetic field and shows diurnal variation due to solar 

photo-ionization  process.  Pedersen  and  Hall  conductivity  peaks  in  the  height  range 
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between  100  and  150  km,  the  dynamo  region.  As  a  result  of  large  field  aligned 

conductivity,  the  geomagnetic  field  lines  behave  like  electric  equipotential  lines  and 

hence electric field parallel to B0 breaks down within a fraction of a second. Significant 

current flows if electric fields orthogonal to B0 exist and Pedersen and Hall conductivities 

are  large.  The  finite  conductivity  and  its  variation  in  space  and  time  modify  the 

transmission  characteristics  of  the  electromagnetic  energy which  is  necessary  for  the 

interpretation of observed wave forms with respect to their original wave structure at the 

source (Volland, 1987).  

Solar  activity  influences  the conductivity  on the  day-to-day basis  and  decadal 

time scale with relative amplitude of 3–20 %. With an increase in solar activity, the GCR 

flux reduces in mid-latitude causing reduction in conductivity in this region, while during 

the same period solar protons may be ‘funneled’ by the Earth’s magnetic field to the 

polar regions resulting in an increased conductivity there. The interaction of solar wind 

with the Earth’s magnetic field also causes a dawn-to-dusk potential difference across the 

polar  region  (Tinsley  and Heelis,  1993).  During  the  active  geomagnetic  periods,  the 

energetic  charged  particles  precipitating  from  the  inner  and  the  outer  Earth’s 

magnetospheric  radiation  belts  interact  with the middle  and the lower atmosphere  by 

depositing  their  energy  in  the  atmosphere  and  producing  ionization  directly  or  via 

Bremsstrahlung radiation,  thereby influencing  the  dynamics  of  storm and atmosphere 

(Tinsley and Heelis, 1993; Tinsley, 2000).

Markson and Muir (1980) suggested how solar variability moderates the Earth’s 

electric field and electrical potential of the ionosphere, which is maintained by the world- 

wide thunderstorm activity. It also affects the weather and climate (Markson,1978), thus 

leading to a connection between electrical  properties of the medium and weather and 

climate. Such a link supports the mechanism in which solar control of ionizing radiation 

modulates atmospheric electrification, cloud physical processes and atmospheric energy 

budgets. On the other hand, some tropospheric disturbances are known to influence the 

ionospheric phenomena. For example, several theoretical and experimental studies show 

that  the  lightning  activity  in  thunderstorms  influence  the  temperature,  ion  densities, 

composition and electrical potential of the ionosphere (Inan et al., 1991;  Taranenko et 

al., 1993; Pasko et al., 1997). In Figure 4, it is shown that the solar activity along with 
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tropical  thunderstorms,  control  the  ionosphere-earth  current  density,  which  is  an 

important  parameter  in  global  atmospheric  electric  circuit.  GEC can  provide  a  good 

framework for understanding the solar-terrestrial  weather relation.   It  relates the solar 

sector  boundary  crossing  to  the  increasing  lightning  frequency  (Reiter,  1972), 

thunderstorm activity  (Cobb,  1967;  Reiter,  1972)  and vorticity  area  index  (Markson, 

1978).   Lightning  frequency and the tropospheric  electric  field  are  found to  increase 

shortly after solar flares.  On a longer time scale, highly positive correlation between the 

11-yr  sunspot  cycle  and thunderstorm activity  has  been reported  (Stingfellow,  1974). 

Schlegel et al. (2001) extended this work  globally and studied how a solar activity signal 

can be transmitted  to  lower atmosphere  and argued that  planetary waves  may play a 

crucial role in it.   Large horizontal potential drops in the ionospheric correlate well with 

the solar flare occurrences with the dealy of about 2 days  or less (Muhleisen,  1977). 

Markson (1978) suggested that the atmospheric electrical response to solar activity may 

provide important clues to how the sun variations modulate weather.  The current in non-

thunderstorm cloud causes space-charge generation by transferring charge to  aerosol 

particles and droplets. Evaporation of droplets concentrates charges and leads to electro-

scavenging  (Tinsely,  2000;  Tripathi,  2000,  Tripathi  and  Harrison,  2001,2002).  The 

scavenging of aerosol particles may lead to changes in the concentration of condensation 

nuclei  which  can  cause  changes  in  the  indirect  aerosol  affect  of  cloud  cover  and 

precipitation rates. Such changes can have weather and climate consequences (Carslaw et 

al., 2002; Kniveton and Tinsley, 2004, Tinsley et al., (2006) have discussed electrically 

enhanced scavenging,  and the electrical  inhibition of scavenging in the context of the 

microphysics of weakly electrified clouds. 

5.  Global Electric Circuit and global temperature (climate change)

Recently  it  has  been suggested to  use GEC as  a  tool  for  studying  the earth’s 

climate  and climatic  changes,  because  of its  direct  connection  with lightning  activity 

(Williams, 2005). Williams (1992) reported an extremely non-linear increase in tropical 

lightning  rate when temperature rose above critical  threshold (nonlinear  sensitivity  of 

thunderstorm activity to temperature). He also showed high correlation between monthly 

mean  of  tropical  surface  air  temperature  and  SR  measurements  of  global  lightning 

activity.  Fullekrug and Fraser-Smith (1998) have inferred global lightning and climate 
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variability from the ELF magnetic field variations. In the global frame work the response 

of lightning and electrified clouds to temperature and change in temperature have been 

analyzed and many time scales including semi-annual, annual, etc have been reported 

(Williams, 2005, and references there in). In the case of semi-annual variation, even 10C 

increase  in  temperature  may  result  in  50%  increase  in  global  lightning  frequency 

(Williams, 2005).

Price and Rind (1992) parameterized global lightning activity using satellite cloud 

data from the ISCCP (International Satellite Cloud Climatology Project) and predicted 

more  lightning  in  a  warmer  world due to  enhanced CO2 content.  Markson and Price 

(1999)  reported  positive  correlation  between  ionospheric  potential  and  global 

temperature,  whereas  ionospheric  potential  was  positively  correlated  with an  inferred 

global  lightning/deep  cloud  index,  which  is  also  positively  correlated  with  global 

temperature.  They suggested that  warmer  temperatures  lead to  more  deep convection 

resulting in higher ionospheric potential. Price (1993) showed good agreement between 

the diurnal surface temperature changes and the diurnal variability of GEC. He suggested 

that  a 1 % increase in  global  surface temperature could result  in  a 20 % increase in 

ionospheric  potential.  Therefore,  the  above  study  showed  a  strong  link  between  the 

frequency/intensity  of  global  deep  convection  and  global  surface  temperatures. 

Muhleisen (1977)  and Markson (1986) suggested that  measured ionospheric  potential 

agree well with the “Carnegie Curve” confirming that lightning plays a major role in the 

global electric circuit. Both ac and dc global circuits have been found to respond to global 

temperature  changes  on  time  scales  ranging  from the  diurnal  (Price,  1993),  through 

seasonal  (Price,  1994;  Williams,  1994)  to  the  El  Nino-Southern  Oscillation  scales 

(Williams, 1992). 

The observed signal level in SR suggests that the cloud to ground lightning is not 

the sole driver of the global electric circuit  (Williams, 1992; Williams and Heckman, 

1993). Markson and Lane-Smith (1994) suggested that combination of SR power level 

monitoring and regular ionospheric soundings could be used to infer proxy measures of 

both global temperature and global rainfall rates.  A close relationship has been shown 

between: (i) tropical surface temperature and monthly variability of SR (Williams, 1992; 

1994);  (ii)  ELF  observations  in  Antarctic/Greenland  and  global  surface  temperature 
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(Fullekrug and Fraser-Smith,  1998);  (iii)  diurnal  surface temperature changes and the 

diurnal  variability  of  the  GEC  (Price,  1993);  and  (iv)  ionospheric  potential  and 

global/tropical  surface  temperature  (Mulheisen,  1977;  Markson,  1986;  Markson  and 

Price, 1999). It has led to the speculation that global warming would result in enhanced 

convective activity, which may result in increased thunderstorm production on a global 

scale.  Reeve and Toumi (1999) using satellite data, showed agreement between global 

temperature and global lightning activity. Price (2000) extended this study and showed a 

close link between the variability of upper troposphere water vapor (UTWV) and the 

variability of global lightning activity. Also UTWV has excellent agreement with surface 

temperature  and  lightning  activity  through  the  measurement  of  the  SR.  This  is  an 

important finding in the area of lightning and climate.  UTWV is closely linked to the 

other phenomena such as tropical cirrus cloud, stratospheric water vapor content,  and 

tropospheric chemistry (Price, 2000). These examples suggested that by monitoring the 

GEC,  it  is  possible  to  study  the  variability  of  surface  temperature,  tropical  deep 

convection,  rainfall,  upper  troposphere  water  vapor  content,  and  other  important 

parameters, which affect the global climate system. 

The global warming issue has dominated the area of climate research for many 

years. In this connection, large developments have appeared with new data sources for 

global lightning, both optical and radio frequency. Many time scales have been explored 

for  lightning  variations  such  as  diurnal,  inter-seasonal,  semiannual,  annual  and inter-

annual, dominated by the ENSO (Williams, 2005). Williams (1992) found a doubling in 

SR amplitude over the 1992 ENSO (El Nino Southern Oscillation) event that correlated 

with the tropical temperature anomaly (Hansen and Lebedeff, 1987). Systematic changes 

in  the  meridional  location  of  tropical  thunderstorm  regions  was  inferred  from  the 

observations  of  SR frequency  variation  on  the  ENSO time  scale  (Satori  and  Zieger, 

1999), a positive inter-annual correlation but the lightning changes were extra tropical as 

reported by Reeve and Toumi (1999). Recently, Williams et al. (2005) have discussed in 

detail the physical mechanisms and hypotheses linking temperature and thermodynamics 

with lightning and global circuit. This clearly shows that the study of physical processes 

involved in the global electric circuit, the variability of global lightning activity and its 

relation to surface temperatures,  tropical  deep convection,  rainfall,  upper tropospheric 
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water  vapor  content,  and other  important  parameters  that  affect  the global circuit  are 

essential to understand the dynamics of biosphere, which is essential for the betterment of 

the human society.        

6.  Global Electric Circuit and Aerosols  

The  electrical  conductivity  in  clean  atmosphere  is  inversely  proportional  to 

aerosol particle content in the air. The conductivity is therefore considered as an index of 

atmospheric aerosol loading over the open ocean and has been used to estimate global 

changes in the background air pollution level (Cobb and Wells, 1970; Retalis and Retalis, 

1998;  Kamra et al., 2001). Harrison and Aplin (2002, 2003) used a theoretical model for 

the  development  of  convective  boundary  layer  to  determine  the  domination  of  local 

pollution  effect  on  the  atmospheric  electrical  potential  measurements.  Using  this 

technique  and  atmospheric  electrical  data  along  with  the  theory  of  boundary  layer 

meteorology, pollution concentration and its composition can be derived. Harrison and 

Aplin (2002) estimated surface pollution concentration to be 60±30  µg m-3 at Kew in 

1863. This value is substantially lower than the previously derived value. They concluded 

that  the  diurnal  variations  in  smoke  pollution  differ  between  the  seasons,  and  have 

changed their character after the advent of motor traffic.

Aerosols  in  the  atmospheric  boundary  layer  and  stratosphere  have  a  strong 

influence on the electrical phenomena in the atmosphere. Adlerman and Williams (1996) 

found large effect  from several  factors such as seasonal  changes, variations  in mixed 

layer heights, variations in the production rates and anthropogenic aerosols and variation 

in  surface wind speed on the seasonal  variations  of  GEC. The high concentration  of 

aerosols  decrease  the  conductivity  of  the  air  in  the  boundary  layer,  and  affect  the 

electrical structure of the lower atmosphere (Manes, 1977; Morita and Ishikawa, 1977). 

Sapkota  and  Varshneya  (1990)  have  studied  the  effect  of  aerosol  particles  of 

anthropogenic and volcanic origins on the global electric circuit. It reduces the current 

density  substantially.  They  have  developed  a  model  for  the  distribution  of  aerosol 

particles  based  on  distribution  of  world  population  density  and  computed  columnar 

resistance, current density, potential distribution and electric field. 

The impact of the Chernobyl nuclear power plant accidents in April 1986 on all 

atmospheric electrical parameters in some parts of Sweden was observed to be significant 
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even  several months later (Israelsson and Knudsen, 1986). Martell (1985) and Israelsson 

et al. (1987) have studied the effect of radioactive material injected into the atmosphere 

on the production of lightning flashes. The increased radiation enhances the ionization in 

the  atmosphere,  which affect  the  charging  mechanism of  clouds  leading  to  enhanced 

thunderstorm activity as was observed after Chernobyl accidents. Israelsson et al. (1987) 

have  proposed  that  enhanced  ion  production  rate  increases  the  air  conductivity 

surrounding the cloud, which may result in to rapid development of screening layer if 

charge separation process exists inside the cloud. This may lead to rapid reduction of the 

electric field external to the cloud. On the other hand if the air conductivity is appreciably 

increased by the radioactivity then the electric field inside the cloud i.e between the cloud 

charges and the screening layer charges will be enhanced. This may lead to an increased 

lightning  activity.  In  the  light  of  precise  measurements  now  available,  the  above 

conjecture needs to  be examined. 

In recent years, innovative methods have been developed to diagnose and study 

cloud microphysics  specially  in  quantifying  the  role  of  aerosol  as  mediator  of  cloud 

microphysics,  precipitation,  cloud electrification and lightning (Rosenfeld and Lensky, 

1998; Rosenfeld and Woodley, 2003). An increase in aerosol concentration may lead to a 

reduction  in  mean  droplet  size,  a  suppression  of  warm  rain  coalescence  and  an 

enhancement of the cloud water reaching the mixed phase region (Williams et al., 2000). 

Steiger and Orville (2003) reported lightning enhancements over oil refineries near Lake 

Charles and Louisians and interpreted it as an aerosol effect. However, the role of surface 

properties  in  controlling  the  lightning  activity  was  considered  to  explain  the  sharp 

discontinuity of flash density at the Texas and Louisians coastlines.  Measurements of 

Andreae et al. (2004) suggested that aerosols enhance the convection process. Jungwirth 

et  al.  (2005)  have  suggested  that  the  aerosol  chemistry  should  also  be  included  in 

explaining  the  cloud-to-ground  lightning  activity.  This  shows that  the  distribution  of 

shape, size and concentration of aerosols in a complex way affect the lightning activity 

and require systematic studies in relation to GEC and space-weather/climate.

7.  Global Electric Circuit and Cosmic Rays

Cosmic  rays  ionize  the  atmospheric  gas  constituents  and  hence  modify  the 

atmosphere’s columnar resistance and ionospheric potential (Markson, 1981). The effect 
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of cosmic rays on ionospheric potential was originally identified from solar modulation 

of lower energy cosmic rays in the form of eleven-year cycle. The correlation between 

galactic cosmic rays and cloud cover an 11-year solar cycle basis (Carslaw et al., 2002) 

has  enhanced  the  interest  in  the  study  of  relationships  between  solar  variations  and 

weather changes. The cosmic ray flux penetrating down to the earth’s lower atmosphere 

during active period of the Sun decrease due to its interaction with solar wind. The steady 

increase  in  solar  activity  during the twentieth  century has led to  a  secular  decline  in 

cosmic rays  (Carslaw et  al.,  2002) and the expected global circuit  response has been 

identified in surface measurements of potential gradient in the United Kingdom (Märcz 

and Harrison, 2003), although aerosol changes have also been suggested to be responsible 

agent (Williams, 2005). Harrison and Ingram (2005) have also reported a decrease in the 

air- earth current at Kew and in the potential gradient in mountain air in the 1970s.

The cosmic rays may also affect the climate / weather involving cloud processes 

such  as  condensation  of  nucleus  abundances  (Wilcox  et  al.,  1974),  thunderstorms 

electrification and thermodynamics (Markson and Muir, 1980), ice formation in cyclones 

(Tinsley,  1996) etc.  Svensmark  and Friis-Christiansen (1997) have analyzed  data  and 

showed a correlation between cosmic rays and earth’s cloud cover over a cycle. Turco et 

al. (1998) and Marsh and Sevensmark (2000) suggested that galactic cosmic rays could 

generate  aerosol  particles  that  can  act  as  cloud  condensation  nuclei  and  affect, 

particularly over ocean, the formation and thickness of cloud. They also found a strong 

association between low clouds, at around 3 km altitude, and cosmic rays flux. Thus, it is 

likely that the cosmic ray influences the GEC as well as climate/  weather. This early 

suggestion of Ney (1959) still remains to be explored in depth. In fact the observation of 

a  correlation  between cosmic ray intensity and cloudiness  provides an opportunity to 

investigate ion-aerosol-cloud interaction, because variation in ion production rate due to 

cosmic rays may impact aerosol distribution and cloud formation. In fact rainfall is an 

important controlling factor of average cloudiness of a region via cloud lifetime. Even 

ice-particles growth induces rainfall because liquid clouds are highly supersaturated with 

respect  to  ice.  Both  these  aspects  can  be  studied  in  detail  through ion-aerosol-cloud 

interactions in which ion production is governed by galactic cosmic rays.
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8. Importance of the GEC study to our society 
Global electric circuit and global lightning activity and its relation with the global 

climate form a basis of the proposal for analyzing/ studying the issues involved in climate 

studies and variations in it. Global signals are evident on many different time scales and 

forcing mechanism for many of these time scales are known. For example, in discussing 

the coupling between global electric circuit and general circulation of the atmosphere, it 

is essential  to distinguish between latent  heating/ rainfall  and electrification/ lightning 

because the former is prevalent with shallow, gentle lifting of air, whereas the latter is 

caused by deeper and stronger lifting. Thus, detailed study of atmospheric circulation is 

essentially required both for understanding GEC and climate.

GEC is  controlled  by  the  space-weather  parameters  such  as  solar  wind,  solar 

flares,  coronal mass ejections etc.  through geomagnetic activity.  As a consequence of 

enhanced solar activity, current surges can be induced in power lines, causing flickering 

lights and blackouts resulting in huge damage. Further, telecommunication cables and 

petroleum pipelines are also affected. The serious consequence of bad space weather is 

disruption  of  satellite  communication  and satellite  links.  Even,  there  is  possibility  of 

damage to earth-orbiting satellites.  Here,  it  should be noted that these effects  are not 

mediated  by  the  global  electric  circuit,  although,  they  are  the  consequences  of  solar 

variations.  Further  studies  are  required  in  this  direction,  because  solar  influence  (on 

various  time  scale)  on  temperature,  thunderstorms  frequency,  tropopause  heights, 

atmospheric circulation, occurrence of drought etc is known (Carslaw et al., 2002 and 

references  there in).  Solar  variability  affect  the earth’s  weather  in  the following way 

namely enhanced solar irradiance may provide excess heat input to the lower atmosphere 

leading to global warming, solar ultraviolet may be absorbed in the lower atmosphere and 

change the local electrodynamics of the region. The other root is through the cosmic rays, 

which control both weather as well as global electric circuit. 

In  general,  the  study  of  various  problems  related  to  global  electric  circuit  is 

definitely  beneficial  to  our  society  because  (i)  the  study  explores  inter-connection 

between the electrical  environment,  climate and weather of the earth’s atmosphere.  It 

may be possible in the future to modify climate and weather by controlling some of the 

electrical  parameters  of the global electrical  circuit  (Bering III,  1995).  This point has 
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been briefly discussed in section 5. (ii) The detail study of global electric circuit and its 

response to extreme solar and geomagnetic variability is useful in modeling of biosphere. 

The role of the global electrical circuit under extreme conditions of solar variability may 

be used in future to assess the harmful effect of the latter. (iii) The close association of 

atmospheric circulation and GEC makes one to speculate / explore link between GEC and 

global warming by CO2. However, there is no observational evidence for such a relation 

to exist. (iv) The aesthetic requirement of understanding the electrical behavior of the 

Earth’s  environment  (Singh  et  al.,  2004)  in  the  same  ways  as  one  would  like  to 

understand meteorological parameters; (v) The detailed knowledge of the forcing from 

the global electric  circuit  would be useful in evaluating the electrical  response of the 

planetary boundary layers (PBL), because electrical processes in this region are complex, 

highly  variable  and  span  a  tremendous  range  of  space  and  time  scales.  The  high 

variability of aerosol particle concentration, size composition leads to one of the largest 

uncertainties  of  anthropogenic  climate  forcing.  Even  the  downward  movement  of 

planetary boundary layer causes enhanced pollution in the region. This is evident in the 

winter  season  in  polluted  cities.  Since  the  dynamics  of  planetary  boundary  layer  is 

affected by GEC, the detailed study of GEC finds importance in human welfare. (vi) 

Better estimates of global lighting activity will help in more accurate estimates of the 

production rates of NOx on global scale, a vital factor for understanding of the climatic 

changes and ozone hole, and hence in global warming.

9.  Recommended areas for future work

Based  on  the  discussions  presented  above,  the  following  problems  are 

recommended for further investigations:  

(i) The thunderstorms and galactic cosmic rays mainly control the global electric 

circuit and link it with the climate and variations  in it on different time scales. 

Discussion in Section 5 brings out how this linkage is reflected in various 

atmospheric   manifestations  such  as  convection,  lightning,   global  surface 

temperature, SR frequency, UT WV etc.  Therefore, it becomes imperative to 

investigate  the  temporal  variations  of  global  electric  circuit  and  the 

mechanisms responsible for such variations on different time scales. Further, 

keeping in view that a single measurement of SR has the potential of replacing 
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the  measurements  of  temperature  all  over  the  globe,  it  is  important  to 

investigate the possibility that whether GEC and the global/regional lightning 

frequency can act as an indicator of climate change or not.

(ii) To  study  the  nature  and  sources  of  middle-atmosphere  discharges  to  (a) 

increase  knowledge  of  the  characteristics  of  the  recently  discovered 

phenomena such as sprites, blue jet, elves etc and their possible association 

with severe weather, (b) to explore their effects on radio wave propagation 

and atmospheric chemistry,  (c) to quantify global occurrence rate of sprites 

and the modification of ionospheric potential by them, and (d) to quantify the 

current to be injected in to GEC by the optical phenomena.

(iii) Some  of  the  non-linear  processes  associated  with  cloud  electrification 

mechanism  are  not  clear.  An  attempt  should  be  made  to  elucidate  the 

fundamental physics of these processes involved in lightning. 

(iv) The  explanation  of  observed  optical  phenomena  such  as  sprite,  elves  etc 

require production of transient current/electric fields in the mesosphere, which 

require further studies.

(v) To quantify the production of oxides of nitrogen (NOX) by lightning to better 

understand  the  upper-tropospheric  production  or  loss  of  ozone,  for  better 

estimation of the global warming.

(vi) To investigate the mechanism, if any, by which cosmic rays affect clouds and 

hence the weather and climate.

(vii) To  quantify  the  significant  feedback  processes  at  work  in  the  electrically 

coupled atmosphere- ionosphere-magnetosphere system.

(viii) The role of global warming (increasing green house effect)  on the various 

phenomena/ processes involved in global atmospheric electric circuit and its 

coupling to climate.
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Caption to the Figures:

Fig. 1 Schematic  diagram of various electrical  processes in the global electric  circuit 

(Roble  and  Tzur,  1986).  The  vector  B  shows  the  direction  of  the  Earth’s 

geomagnetic  field,  and  arrows  show  the  direction  of  the  current  flow  in  the 

regions of the tropospheric, ionospheric and magnetospheric generators.

Fig.2 Annual diurnal variation of the potential gradient measured on the surface of the 

Oceans ( Parkinson and Torrenson, 1931; Whipple and Scrase, 1936). 

Fig. 3 Lightning  related  transient  optical  emissions  in  atmosphere  (stratosphere  and 

mesosphere): sprites, jets, elves and gigantic (Neubert, 2003;  Pasko, 2003). 

Fig. 4 Flow chart  describing  the  observed  correlations  and  hypothetical  mechanisms 

between different solar activity and tropical thunderstorms on the global electric 

circuit,  various  processes  of  cloud  microphysics  and  weather  and  climate. 

(Tinsely, 2000).
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